抽象地说,解决一个回溯问题,实际上就是遍历一棵决策树的过程,树的每个叶子节点存放着一个合法答案。你把整棵树遍历一遍,把叶子节点上的答案都收集起来,就能得到所有的合法答案。
站在回溯树的一个节点上,你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。
回溯算法的框架:#
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」。
[!warning] 与 DFS 算法的区别 就是「做选择」和「撤销选择」到底在 for 循环外面还是里面的区别,DFS 算法在外面,回溯算法在里面。
[!tip] 划重点 动归/DFS/回溯算法都可以看做二叉树问题的扩展,只是它们的关注点不同:
- 动态规划算法属于分解问题(分治)的思路,它的关注点在整棵「子树」。
- 回溯算法属于遍历的思路,它的关注点在节点间的「树枝」。
- DFS 算法属于遍历的思路,它的关注点在单个「节点」。
例子:#
全排列算法
![[Pasted image 20250223173155.jpg]]
分析#
只要从根遍历这棵树,记录路径上的数字,其实就是所有的全排列。我们不妨把这棵树称为回溯算法的「决策树」。
为啥说这是决策树呢,因为你在每个节点上其实都在做决策。比如说你站在下图的红色节点上:

你现在就在做决策,可以选择 1 那条树枝,也可以选择 3 那条树枝。为啥只能在 1 和 3 之中选择呢?因为 2 这个树枝在你身后,这个选择你之前做过了,而全排列是不允许重复使用数字的。
现在可以解答开头的几个名词:[2] 就是「路径」,记录你已经做过的选择;[1,3] 就是「选择列表」,表示你当前可以做出的选择;「结束条件」就是遍历到树的底层叶子节点,这里也就是选择列表为空的时候。
如果明白了这几个名词,可以把「路径」和「选择」列表作为决策树上每个节点的属性,比如下图列出了几个蓝色节点的属性:

我们定义的 backtrack 函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层叶子节点,其「路径」就是一个全排列。![[Pasted image 20250223173357.jpg]]
代码#
from typing import List
class Solution:
def __init__(self):
self.res = []
# 主函数,输入一组不重复的数字,返回它们的全排列
def permute(self, nums: List[int]) -> List[List[int]]:
# 记录「路径」
track = []
# 「路径」中的元素会被标记为 true,避免重复使用
used = [False] * len(nums)
self.backtrack(nums, track, used)
return self.res
# 路径:记录在 track 中
# 选择列表:nums 中不存在于 track 的那些元素(used[i] 为 false)
# 结束条件:nums 中的元素全都在 track 中出现
def backtrack(self, nums: List[int], track: List[int], used: List[bool]):
# 触发结束条件
if len(track) == len(nums):
self.res.append(track.copy())
return
for i in range(len(nums)):
# 排除不合法的选择
if used[i]:
# nums[i] 已经在 track 中,跳过
continue
# 做选择
track.append(nums[i])
used[i] = True
# 进入下一层决策树
self.backtrack(nums, track, used)
# 取消选择
track.pop()
used[i] = False

